Semi-Supervised Gated Recurrent Neural Networks for Robotic Terrain Classification

نویسندگان

چکیده

Legged robots are popular candidates for missions in challenging terrains due to their versatile locomotion strategies. Terrain classification is a key enabling technology autonomous legged robots, allowing them harness innate flexibility adapt the demands of operating environment. We show how highly capable machine learning techniques, namely gated recurrent neural networks, allow our target robot correctly classify terrain it traverses both supervised and semi-supervised fashions. Tests on benchmark dataset shows that time-domain classifiers well handling raw variable-length data with small amount labels outperform frequency-domain classifiers. The results own extended opens up range high-performance behaviours specific those environments. Furthermore, we unlabelled used improve significantly model.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph Partition Neural Networks for Semi-Supervised Classification

We present graph partition neural networks (GPNN), an extension of graph neural networks (GNNs) able to handle extremely large graphs. GPNNs alternate between locally propagating information between nodes in small subgraphs and globally propagating information between the subgraphs. To efficiently partition graphs, we experiment with several partitioning algorithms and also propose a novel vari...

متن کامل

Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks

‎Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎In this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎Then‎, ‎we use...

متن کامل

Gated Feedback Recurrent Neural Networks

In this work, we propose a novel recurrent neural network (RNN) architecture. The proposed RNN, gated-feedback RNN (GF-RNN), extends the existing approach of stacking multiple recurrent layers by allowing and controlling signals flowing from upper recurrent layers to lower layers using a global gating unit for each pair of layers. The recurrent signals exchanged between layers are gated adaptiv...

متن کامل

Semi Supervised Document Classification Model Using Artificial Neural Networks

Automatic document classification is of paramount importance to knowledge management in the information age. Document classification is a kind of text data mining and organization technique that automatically groups related documents into clusters. Most of the common techniques in document classification are based on the statistical analysis of a term, either word or phrase. Statistical analysi...

متن کامل

Minimal Gated Unit for Recurrent Neural Networks

Recently recurrent neural networks (RNN) has been very successful in handling sequence data. However, understanding RNN and finding the best practices for RNN is a difficult task, partly because there are many competing and complex hidden units (such as LSTM and GRU). We propose a gated unit for RNN, named as Minimal Gated Unit (MGU), since it only contains one gate, which is a minimal design a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE robotics and automation letters

سال: 2021

ISSN: ['2377-3766']

DOI: https://doi.org/10.1109/lra.2021.3060437